產品推薦:原料藥機械|制劑機械|藥品包裝機械|制冷機械|飲片機械|儀器儀表|制藥用水/氣設備|通用機械

技術中心

制藥網>技術中心>選購指南>正文

歡迎聯(lián)系我

有什么可以幫您? 在線咨詢

設備更新|粉末原子層沉積(PALD):科研平臺建設“新質生產力”

來源:復納科學儀器(上海)有限公司   2024年06月07日 13:57  

設備更新|粉末原子層沉積(PALD):科研平臺建設“新質生產力”

隨著對科技創(chuàng)新的不斷重視和投入,新一輪的大規(guī)模設備以舊換政策為廣大高校和研究機構帶來了發(fā)展機遇。高質量的科研平臺建設是提升研究水平、增強競爭力的關鍵。Forge Nano 的新型粉末原子層沉積設備不僅能夠提升研究質量,還能打通產、學、研三界的橋梁,助力高校在科研的道路上邁出堅實的步伐。

 

原子層沉積系統(tǒng)新型粉末原子層沉積助力高校平臺建設

 

粉末原子層沉積,利用其平臺技術,可以在高比表面積的粉末顆粒表面構筑超薄的納米涂層或活性組分,開發(fā)多種涂層工藝。同時,可將粉體ALD技術進行工業(yè)化放大的企業(yè)(千噸級粉末處理能力)。我們誠摯地邀請廣大科研工作者,利用新型 ALD 平臺開發(fā)可放大的粉體涂層工藝,為催化、新能源、粉末冶金以及制藥等研究方向帶來更多無限可能。

 

1.png

 

 

Part 01.關于粉末原子層沉積技術

 

粉末技術經過多年的發(fā)展,已經形成多樣化的制備及加工技術。表面包覆作為提升粉末物理化學性能的重要手段,長期以來一直缺乏有效的精密手段。傳統(tǒng)的液相包覆或氣相包覆手段都無法實現(xiàn)均勻以及厚度的精密控制,限制了包覆技術的進一步發(fā)展。

 

原子層沉積技術(ALD)是一種自限制性的化學氣相沉積手段,通過將目標反應拆解為若干個半反應,實現(xiàn)表面涂層的原子層級厚度控制。利用該技術制備的涂層具有:共形,無針孔,均勻的特點,對于復雜的表面界面以及高縱深比樣品有較好的沉積效果。

粉末原子層沉積(PALD)系統(tǒng)則克服了傳統(tǒng)原子層沉積無法高效處理大批量高比表面積樣品的缺點,發(fā)展出高通量的處理能力。衍生出包含:流化床,旋轉床在內的多種粉末 ALD 形式。

 

2.png

ALD 技術制備的薄膜更均勻(左:溶膠凝膠法;右:ALD)

 

這種精度較高的包覆技術已經被證明可用于多種組分以及納米結構的制備,配合刻蝕還可進行復雜結構的制備。包括:單原子/團簇催化劑,鋰電材料表面包覆,藥物制劑流動性改善,金屬粉末表面鈍化以及選擇性原子層沉積等。

 

3.png

PALD 技術已被驗證可制備無機以及有機的涂層

 

Part 02.Forge Nano 粉末原子層沉積選型推薦

 

平臺建設利器:Prometheus 流化床原子層沉積系統(tǒng)

 

利用 Prometheus 流化床原子層沉積系統(tǒng)可開發(fā)探索復雜的高比表面積粉末涂層,同時也能將批次處理能力提升至企業(yè)驗證需求的水平,可加快成果轉化速度。適合兼顧科學研究以及成果轉化的工藝開發(fā)需求,實現(xiàn)與企業(yè)小試要求的無縫銜接。

 

4.jpg

 

1.功能特點:采用流化床技術實現(xiàn)粉料分散,專為粉末 ALD 設計,可實現(xiàn)克級到公斤級粉末材料的界面涂層生長。

 

5-1.png

 

2.適用領域:鋰電電極材料、負載型催化劑、藥物制劑和金屬/陶瓷粉末等

3.批次處理量:可更換腔室,選用5ml、150ml 以及 600ml 的不同批次粉料,實現(xiàn)從毫克到公斤級的粉料 ALD 處理。

4.前驅體通道:2-8(最多 4 路低蒸汽壓前驅體通道),鼓泡流化床前驅體管道設計,有效促進低蒸汽壓前驅體的輸送。

5.在線質譜監(jiān)測:精準控制 ALD 前驅體利用率(可達 90% 利用率)

6.臭氧發(fā)生器:直接與粉末接觸的臭氧管道,在促進粉料分散的同時實現(xiàn)臭氧 dose

7.可行性驗證:對于鋰電和金屬粉材料,工業(yè)的可行性驗證需要單次百克甚至公斤級的粉料,這是傳統(tǒng) ALD 設備無法實現(xiàn)的處理量

 

基礎研究:Pandora 多功能原子層沉積系統(tǒng)

 

Pandora 多功能原子層沉積系統(tǒng)使用操作簡單,兼容性強,適合在前期快速開展粉末包覆和平面樣品薄膜沉積的研究。同時,該系統(tǒng)能真正做到兼顧多種不同樣品的需求,可處理各種復雜樣品并做到 ALD 包覆。

 

6.jpg

 

1.功能特點:采用旋轉床反應器,粉末在重力與離心力的共同作用下實現(xiàn)分散。通過精確的前驅體注入,實現(xiàn)高效的利用以及均勻的包覆效果。此外,外腔室可容納5L的非平面類樣品進行 ALD 測試。

 

7-1.png

 

2.適用領域:粉末類樣品,平面類樣品,三維物件(已通過 cGMP 認證)

3.腔室大小:200ml 粉末腔,5L 外腔

4.前驅體通道:3-6(基礎三路高蒸汽壓通道,3 路低蒸汽壓獨立通道)

5.在線質譜監(jiān)測:精準控制 ALD 前驅體利用率(可達 90% 利用率)

 

Part 03.粉末原子層沉積技術的應用領域

 

催化劑

 

負載型催化劑材料存在比表面積大、界面不穩(wěn)定以及選擇性差等問題,通過 ALD 的方法可以改善界面,實現(xiàn)選擇性支撐層、防護層以及構筑活性位點的多種功能。(詳見:?通量粉末原?層沉積(PALD)技術在催化劑中的應?)

8.png

Forge Nano 與美國國家再生能源實驗室和阿貢實驗室合作,開發(fā)新一代催化劑材料。通過ALD 技術,實現(xiàn) Pd/Al2O3 催化劑更高的穩(wěn)定性,在高溫條件下,可避免催化劑的燒結,從而使實現(xiàn)穩(wěn)定的芳烴氫化反應[1]。

 

9.png

TiO2 的包覆促進催化劑的穩(wěn)定

 

在另一項同樣來自美國國家可再生能源實驗室的研究中,使用高通量的 ALD 技術構筑 Pt 催化劑涂層,可實現(xiàn) Ni/Co 納米線材料的高效催化,并防止金屬元素浸出損耗[2]。

 

10.png

納米線的催化劑涂層促進高效催化

 

鋰電電極材料包覆

 

以鋰離子電池為代表的電池材料,在充放電時存在容量不可逆轉的下降,甚至引起安全事故。對電極材料的包覆處理是從源頭改善電池性能的重要手段。通過包覆常規(guī)的氧化物、以及鈦/鋁的有機雜化涂層,可以明顯提升電池的電化學性能,并提升其安全性。目前,F(xiàn)orge Nano 已經使用該技術在 6K Energy 的正極材料和Anvion 的負極材料中實現(xiàn)了量產的目標。

 

11.png

ALD 包覆后的高壓性能有明顯提升,同時其熱失控風險降低

 

此外,利用 ALD 的厚度可控,均勻性特點,可將部分多元化合物,電解質涂層用 ALD 的方式在電極材料表面進行構筑,可以有效降低涂層負載量,并進一步提升涂層性能。

 

粉末冶金

 

粉末冶金利用粉末材料鑄造型材,這對粉末材料的流動性和分散性有較高的要求。在粉末熔融的過程中,團聚顆粒以及天然氧化層中的雜質對于最終型材的質量會有較大影響。通過 ALD 技術進行粉末包覆后,材料的抗侵蝕,耐潮性,流動性有明顯改善,同時涂層成分的變化還可以賦予粉末功能,如改變其反射率,親水性等,擴大應用場景[3]。

12.png

 

制藥

 

藥物粉末尤其是 API,通常為無定形或水合物狀態(tài),極易發(fā)生團聚。通過 ALD 包覆,可有效改善其分散系和流動性,這對于吸入式藥物制劑的研發(fā)有重要的促進作用。藥物親水性的調控對其在人體體液中的釋放有積極意義,而 ALD 只需幾個周期的涂層就可實現(xiàn)不同親水性或親油性的樣品包覆。

 

13.png

此外,對于部分熱敏感的藥物,通過 ALD 包覆可以提升其熱穩(wěn)定性,防止其發(fā)生熱解。一項合作研究表明,將經過 ALD 包覆處理的 HPV 疫苗用于單次給藥實驗,實現(xiàn)了小鼠體內更為持久的抗原反應[4]。

14.png

ALD 包覆后的疫苗擁有更高的熱穩(wěn)定性和更持久的藥效

 

 

參考文獻

【1】 McNeary W W, Tacey S A, Lahti G D, et al. Atomic Layer Deposition with TiO2 for Enhanced Reactivity and Stability of Aromatic Hydrogenation Catalysts[J]. ACS Catalysis, 2021, 11: 8538-8549.

【2】Alia S M, Neyerlin K C, Hurst K, et al. Advances in Ptni Nanowire Extended Thin Film Electrocatalysts[C]//ECS Meeting Abstracts. IOP Publishing, 2018 (44): 1505.

【3】Miller J, Gillespie C, Chesser J, et al. Surface modification of organic powders for enhanced rheology via atomic layer deposition[J]. Advanced Powder Technology, 2020, 31(6): 2521-2529.

【4】Garcea R L, Meinerz N M, Dong M, et al. Single-administration, thermostable human papillomavirus vaccines prepared with atomic layer deposition technology[J]. npj Vaccines, 2020, 5(1): 1-8.


 

 

免責聲明

  • 凡本網注明"來源:制藥網"的所有作品,版權均屬于制藥網,轉載請必須注明制藥網,http://m.a6l3nk2.cn。違反者本網將追究相關法律責任。
  • 企業(yè)發(fā)布的公司新聞、技術文章、資料下載等內容,如涉及侵權、違規(guī)遭投訴的,一律由發(fā)布企業(yè)自行承擔責任,本網有權刪除內容并追溯責任。
  • 本網轉載并注明自其它來源的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點或證實其內容的真實性,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品來源,并自負版權等法律責任。
  • 如涉及作品內容、版權等問題,請在作品發(fā)表之日起一周內與本網聯(lián)系,否則視為放棄相關權利。

企業(yè)未開通此功能
詳詢客服 : 0571-87858618